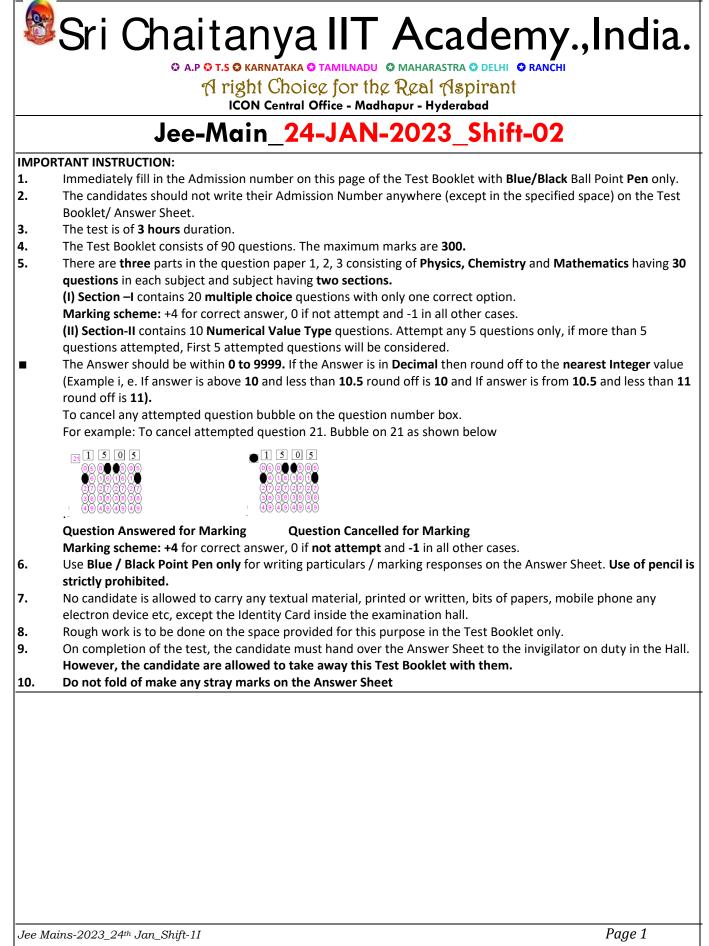


The BEST Results in India! Dominant! Unparalleled!

ALL INDIA RANKS IN JEE-ADVANCED 2022


D JOHN JOSEPH | H.T.NO: 6036441*

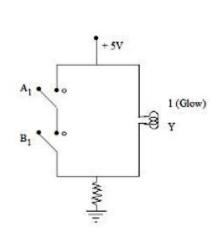
JEE MAIN (JAN) 2023 (24-01-2023-Session-2)

MATHEMATICS, PHYSICS & CHEMISTRY

040 66 15 15 15

srichaitanya.net

PHYSICS


1.

Jee Mains-2023_24th Jan_Shift-11

(SINGLE CORRECT ANSWER TYPE)

This section contains 20 multiple choice questions. Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct.

Marking scheme: +4 for correct answer, 0 if not attempted and -1 in all other cases.

The logic gate equivalent to the given circuit diagram is:

1)OR	2) NAND	3) AND	4) NOR
------	----------------	----------------	---------------

Ans:2

Sol:

A	В	Y
0	0	1
1	0	1
0	1	0
1	1	0

2. Given below are two statements :

Statement I : Acceleration due to earth's gravity decreases as you go 'up' or 'down' from earth's surface .

Statement II : Acceleration due to earth's gravity 'h' and depth 'd' from earth's surface ; if h = d

In the light of above statements, choose the mast appropriate answer form the options

given below

1) Statement I is incorrect but statement II is correct

2) Both Statement I and Statement II are incorrect

3) Statement I is correct but statement II is incorrect

4) Both Statement I and II are correct

3.

Sol:
$$g^1 = g\left(1 - \frac{2h}{R}\right)$$
 $g^{11} = g\left(1 - \frac{d}{R}\right)$

The electric field and magnetic field components of an electromagnetic wave going through vacuum is described by

$$E_x = E_0 \sin\left(kz - \omega t\right)$$

 $B_{y} = B_{0} \sin\left(kz - \omega t\right)$

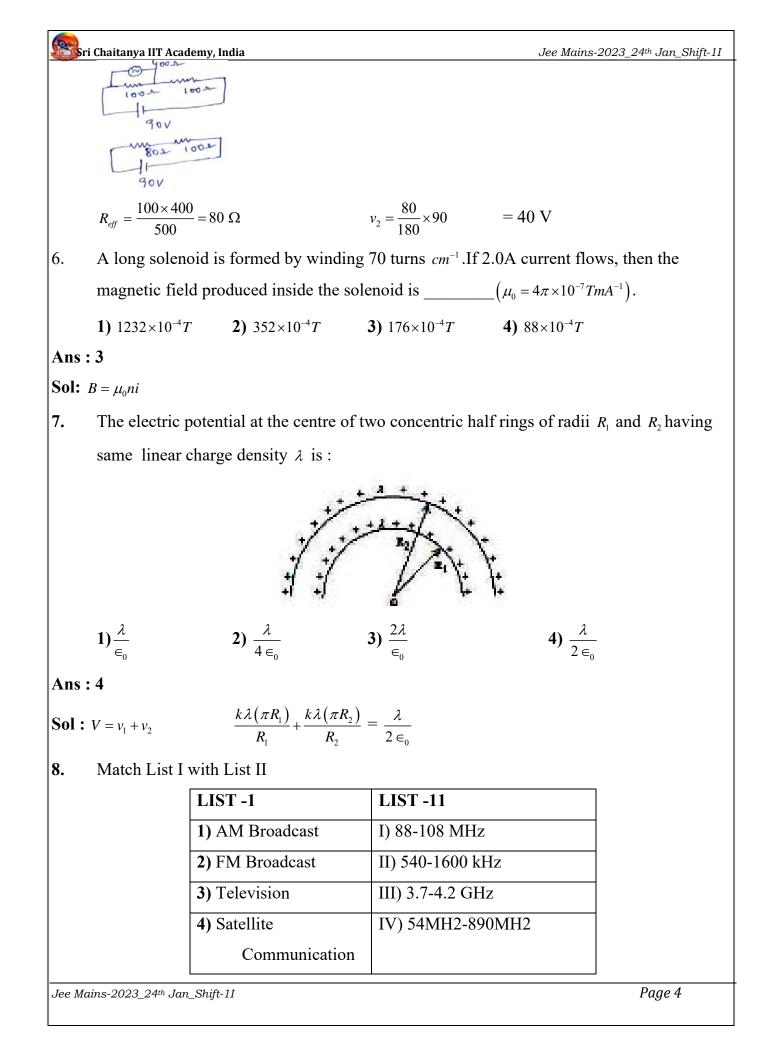
Then the correct relation between E_0 and B_0 is given by

1) $kE_0 = \omega B_0$ **2)** $\omega E_0 = kB_0$ **3)** $E_0 = kB_0$ **4)** $E_0 \times B_0 = \omega k$

Ans:1

Sol:
$$C = \frac{E_0}{B_0}$$
 $\frac{W}{K} = \frac{E_0}{B_0}$ $E_0 k = \omega B_0$

4. Let γ_1 be the ratio of molar specific heat at constant pressure and molar specific heat at constant volume of a monoatomic gas and γ_2 be the similar ratio of diatomic gas .

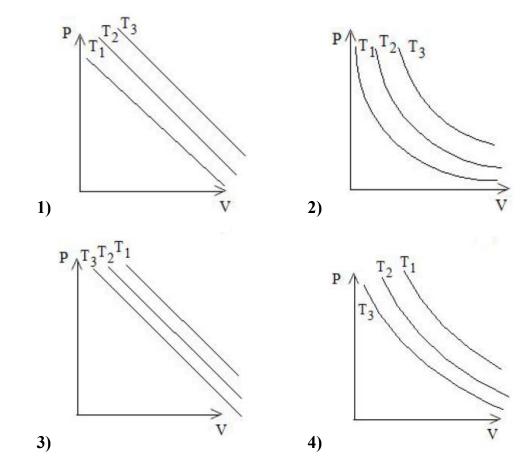

Considering the diatomic gas molecule as a rigid, the ratio,
$$\frac{\gamma_1}{\gamma_2}$$
 is a **1**) $\frac{27}{35}$ **2**) $\frac{25}{21}$ **3**) $\frac{21}{25}$ **4**) $\frac{35}{27}$

Sol: $\frac{\gamma_1}{\gamma_2} = \frac{5/3}{7/5} = \frac{25}{21}$

5. A cell of emf 90V is connected across series combination of two resistors each of 100Ω resistance. A voltmeter of resistance 400Ω is used to measure the potential difference across each resistor. The reading of the voltmeter will be:

Ans:3

Sol :



Sr	ri Chaitanya IIT Academy,			Jee Mains-2023_24 th Jan_Shift-11
			e options given bel	
	1)A-IV, B- III,C-		2) A-II,B-III,C	
	3)A-II,B-I,C-IV,I	D-III	4) A-I,B-III,C-	II,D-IV
Ans	:3			
Sol :	Conceptual			
9.	If two vectors \vec{P} =	$=\hat{i}+2m\hat{j}+m\hat{k}$ and \hat{k}	$\vec{Q} = 4\hat{i} - 2\hat{j} + m\hat{k}$ are	perpendicular to each other. Then,
	the value of m wi	ll be :		
	1) 3	2) 2	3) -1	4) 1
Ans	: 2			
Sol :	$\overline{P}.\overline{Q}=0$			
10.	The frequency (v) of an oscillating	liquid drop may de	epend upon radius (r) of the drop,
	density (ρ) of lice	uid and the surfac	e tension (s) of the	e liquid as : $v = r^a \rho^b s^c$. The values of
	a,b, and c respect	ively are		
		-	3) $\left(\frac{3}{2}, \frac{1}{2}, -\frac{1}{2}\right)$	4) $\left(-\frac{3}{2},\frac{1}{2},\frac{1}{2}\right)$
Ans	:1			
Sol :	$m^{0}l^{0}t^{-1} = l^{a}(ml^{-3})^{b}($	$\left[mt^{-2}\right]^{c}$		
	Compare power of	on both sides		
	$a = -\frac{3}{2}$	$b = -\frac{1}{2}$	$c = \frac{1}{2}$	
11.	Given below are	two statements : o	ne is labelled as A	ssertion A and the other is labelled
	as Reason R			
	Assertion A : Ste	el is used in the co	onstruction of build	lings and bridges
	Reason R : Steel	is more elastic and	l its elastic limit is	high
	In the light of abo	ove statements , ch	noose the most app	propriate answer from the options
	given below			
	1) A is not correc	t but R is correct		
	2) A is correct bu	t R is not correct		
	3)Both A and R a	re correct and R is	s is the correct exp	lanation of A
	4)Both A and R a	re correct and R i	s NOT the correct	explanation of A
	ains-2023_24 th Jan_Shifi			Page 5

Ans:3

Sol : Conceptual

12. In an Isothermal change, the change in pressure and volume of a gas can be represented for three different temperature ; $T_3 > T_2 > T_1$ as :

Ans:2

Sol: Pv = nRT

 $\Rightarrow PV\alpha T$ As Area of P-V graph is more then T is more . Nature of group is hyperbola

13. A body of mass 200g is tied to a spring constant 12.5 Nm, while the other end of spring is fixed at point O. If the body movies about O in a circular path on a smooth horizontal surface with constant angular speed 5 rad/s. Then the ratio of extension in the spring to its natural length will be :

1) 1 : 2 **2**) 2 : 5 **3**) 1 : 1 **4**) 2 : 3

Ans:4

Sol: $m(L+e)\omega^2 = Ke$

$$200 \times 10^{-3} \left(l+e \right) 25 = \frac{25}{2}e$$

🎇 ri Chaitanya IIT Academy, India Jee Mains-2023_24th Jan_Shift-11 $\frac{l+e}{e} = \frac{10}{4} = \frac{5}{2} \Longrightarrow \frac{l}{e} = \frac{3}{2}$ $\frac{e}{l} = \frac{2}{3}$ 14. An α -particle, a proton and an electron have the same kinetic energy. Which one of the following is correct in case of their de-Broglie wavelength : 1) $\lambda_{\alpha} > \lambda_{p} > \lambda_{e}$ 2) $\lambda_{\alpha} < \lambda_{p} < \lambda_{e}$ 3) $\lambda_{\alpha} = \lambda_{p} = \lambda_{e}$ 4) $\lambda_{\alpha} > \lambda_{p} < \lambda_{e}$ Ans:2 **Sol:** $\lambda = \frac{h}{P} = \frac{h}{\sqrt{2mKE}}$ $m_e < m_p < m_{\alpha}$ $\Rightarrow \lambda \alpha \frac{1}{\sqrt{m}} \Rightarrow \qquad \lambda_{\alpha} < \lambda_{p} < \lambda_{e}$ The velocity time graph of a body moving in a straight line is shown in figure : 15. $v(ms^{-1}) = 0$ -2 - 2-4 - 24 10 time $(s) \rightarrow$ The ratio of displacement to distance travelled by the body in time 0 to 10s is : 1) 1 : 2 2) 1 : 3 3) 1 : 1 **4)** 1 : 4 **Ans: 2 Sol**: Total area = distance = $|S_1| + |S_2| + |S_3| + |S_4|$ $= |2 \times 8| + |2 \times 4| + |4 \times 4| + |2 \times 4| = 16 + 8 + 16 + 8 = 48$ Displacement = 16 - 8 + 16 - 8 = 16If the distance of the earth from Sun is $1.5 \times 10^6 km$. Then the distance of an imaginary planet 16. from Sun, if its period of revolution is 2.83 years is : **2)** $3 \times 10^7 km$ **1)** $3 \times 10^{6} km$ **3)** $6 \times 10^6 km$ **4)** $6 \times 10^7 \, km$ Ans:1 **Sol:** $T^2 \alpha R^3$ Page 7 Jee Mains-2023 24th Jan Shift-11

Sri Chaitanya I<u>IT Academy, India</u>

$\left(\frac{T_2}{T_1}\right)^2 = \left(\frac{R_2}{R_1}\right)^3 \qquad \qquad R_2 = \left(\frac{T_2}{T_1}\right)^{2/3} \times R_1$

 $R_2 = (2.83)^{2/3} \times 1.5 \times 10^6 = 3 \times 10^6 \, Km.$

17. When a beam of white light is allowed to pass through convex lens parallel to principal axis, the different colours of light converge at different point on the principle axis after refraction. This is called.

1) Scattering	2) Chromatic aberration
3) Spherical aberration	4) Polarisation

Ans:2

- **Sol:** A lens will not focus different colours in exactly the same place. Because the focal length depends on refraction. This is called chromatic aberration.
- 18. A metallic rod of length 'L' is rotated with an angular speed of ' ω ' normal to a uniform magnetic field 'B' about an axis passing through one end of rod as shown in figure . The induced emf will be :

1)
$$\frac{1}{2}BL^{2}\omega$$
 2) $\frac{1}{4}B^{2}L\omega$ 3) $\frac{1}{4}BL^{2}\omega$ 4) $\frac{1}{2}B^{2}L^{2}\omega$

Ans:1

Sol :

 $de = B.l.\upsilon$

de = B.dx.xw

$$\int de = \int_{0}^{1} BWX.dX$$

Jee Mains-2023_24th Jan_Shift-11

$$e = BW \frac{l^2}{2}$$
$$e = \frac{1}{2}Bl^2w$$

19. A photon is emitted in transition from n = 4 to n = 1 level in hydrogen atom .The corresponding wavelength for this transition is (given , $h = 4 \times 10^{-15} eVs$):

1) 94.1 nm **2)** 974 nm **3)** 99.3 nm **4)** 941 nm

Ans:1

Sol:
$$E_2 - E_1 = \frac{h_c}{\lambda}$$

 $13.6z^2 \left(\frac{1}{1} - \frac{1}{4^2}\right) = \frac{h \times c}{\lambda}$
 $\lambda = \frac{4 \times 10^{-15} \times 3 \times 10^8}{13.6} \times \frac{16}{15} = 94.1nm$

20. Given below are two statement : one is labelled as Assertion A and the labelled as Reason R.

Assertion A : A pendulum clock when taken to Mount Everest becomes fast

Reason R : The value of g (acceleration due to gravity) is less at Mount Everest than its value on the surface of earth.

In the light of the above statements, choose the most appropriate answer from the options given below

1)Both A and R are correct and R is is the correct explanation of A

2)A is correct but R is not correct

3)A is not correct but R is correct

4)Both A and R are correct and R is NOT the correct explanation of A

Ans:3

Sol : $T = 2\pi \sqrt{\frac{l}{g}}$ 'g' value decrease an mount everest. So time period increases .It's becomes slow

(NUMERICAL VALUE TYPE)

Section-II contains 10 Numerical Value Type questions. Attempt any 5 questions only. First 5 attempted questions will be considered if more than 5 questions attempted. The Answer should be within 0 to 9999. If the Answer is in **Decimal** then round off to the **nearest Integer** value (Example i, e. If answer is above 10 and less than 10.5 round off is 10 and f answer is from 10.5 and less than 11 round off is 11). Marking scheme: +4 for correct answer, 0 if not attempt and -1 in all other cases

🕿 ri Chaitanya IIT Academy, India Jee Mains-2023_24th Jan_Shift-11 A spherical ball of radius 1 mm and density 10.5g/cc is dropped in glycerine of coefficient 21. of viscosity 9.8 poise and density 1.5 g/cc. Viscous force on the ball when it attains constant velocity is $3696 \times 10^{-x} N$. The value of x is (given $g = 9.8m/s^2$ and $\pi = \frac{22}{7}$) Ans: x = 7**Sol:** $r = 1mm = 1 \times 10^{-3} m$ W= mg = 4 MY3. Pbg $\rho_b = 10.5 \ gm \ / \ c.c., \sigma_g = 1.5 \ gm \ / \ c.c.$ $\eta = 9.8 \ poise, F_v = 3696 \times 10^{-X}.$ x = ? $F_{\mu} + F_{\nu} = W$ $F_{v} - \frac{4}{3}\pi r^{3} \cdot \rho_{b}g - \frac{4}{3}or r^{3} \cdot \sigma_{g}g$ $F_{v} - \frac{4}{3}\pi r^{3} \cdot \left(\rho_{b} - \rho_{g}\right) \cdot g$ $F_{v} - \frac{4}{3} \times \frac{22}{7} \times (10^{-3})^{3} \times 9 \times 10^{3} \times 9.8$ $= 3696 \times 10^{-7} N$ $\therefore x = 7$ A body of mass 1 kg begins to move under the action of a time dependent force 22. $\vec{F} = (t\hat{i} + 3t^2\hat{j})N$, where \hat{i} and \hat{j} are the unit vectors along x and y axis. The power developed by above force, at the time t = 2s, will be _____w. Ans : 100 **Sol:** $\vec{F} = (t\hat{i} + 3t^2\hat{j})N$ $m\vec{a} = t\hat{i} + 3t^2\hat{j}$ $\vec{a} = \frac{t\hat{i} + 2t^2\hat{j}}{m} = \frac{t\hat{i} + 3t^2\hat{j}}{1} = t\hat{i} + 3t^2\hat{j} \qquad \qquad \vec{a} = t\hat{i} + 3t^2\hat{j}$ $\frac{dv}{dt} = t\hat{i} + 3t^2\hat{j} \qquad \qquad \alpha v = \left(t\hat{i} + 3t^2\hat{j}\right)dt$ $\int dv = \int \left(t\hat{i} + 3t^2\hat{j}\right) dt \quad \vec{V} = \frac{t^2}{2}\hat{i} \to 3.\frac{t^3}{3}\hat{j} = \frac{t^2}{2}\hat{i} + t^3\hat{j}.$ At $t = 2 \sec \rightarrow \vec{F} = 2\hat{i} + 12\hat{j}$ $\vec{v} = 2\hat{i} + 8\hat{j}$

 $P = \vec{F}.\vec{V} = (2\hat{i} + 12\hat{j}).(2\hat{i} + 8\hat{j}) = 4 + 96 = 100W$

23. The energy released per fission of nucleus of ²⁴⁰ X is 200 MeV. The energy released if all the atoms in 120 g of pure ²⁴⁰ X undergo fission is $____ \times 10^{25} MeV$. (Given $N_A = 6 \times 10^{23}$)

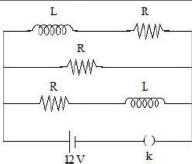
Ans: 6

Sol: NO.OF atoms = $\frac{120}{240} \times 6 \times 10^{23}$ = 3×10^{23}

Energy released if all the atoms in 120 gm of pure \times^{240} nuclei is = $3 \times 10^{23} \times 200 MeV$ = $6 \times 10^{25} MeV$

24. A parallel plate capacitor with air between the plate has a capacitance of 15Pf. The separation between the plate becomes twice and the space between them is filled with a medium of dielectric constant 3.5. Then the capacitance becomes $\frac{x}{4} pF$. The value of x is

Ans : 105


Sol:
$$C = \frac{\epsilon_0 A}{d} = 15PF$$
$$C^1 = \frac{K \cdot \epsilon_0 A}{d^1} = K \cdot \frac{\epsilon_0 A}{2d} = \frac{K}{2} [C]$$
$$C^1 = \frac{3.5}{2} = [15PF] = \frac{105}{4} P \cdot F$$
$$\frac{x}{4} = \frac{105}{4} \qquad \therefore x = 105$$

25. If a copper wire is stretched to increase its length by 20%. The percentage increase in resistance of the wire is _____%.

Ans : 44 %

Sol:
$$R = \frac{\delta l^2}{V} \Rightarrow R \alpha l^2$$

 $\frac{R_2}{R_1} = \left(\frac{l_2}{l_1}\right)^2 = \left(\frac{120}{100}\right)^2 = \frac{144}{100} \left(\frac{R_2}{R_1} - 1\right) \times 100 = \left(\frac{144}{100} - 1\right) \times 100 = 44\%$

26. Three identical resistors with resistance $R = 12\Omega$ and two identical inductors with self inductance L =5 Mh are connected to an ideal battery with emf of 12 V as shown in figure . The current through the battery long after the switch has been closed will be ______A.

Ans : 3 amp

Sol:
$$i = \frac{V}{R_{eff}} = \frac{12}{4} = 3amp$$

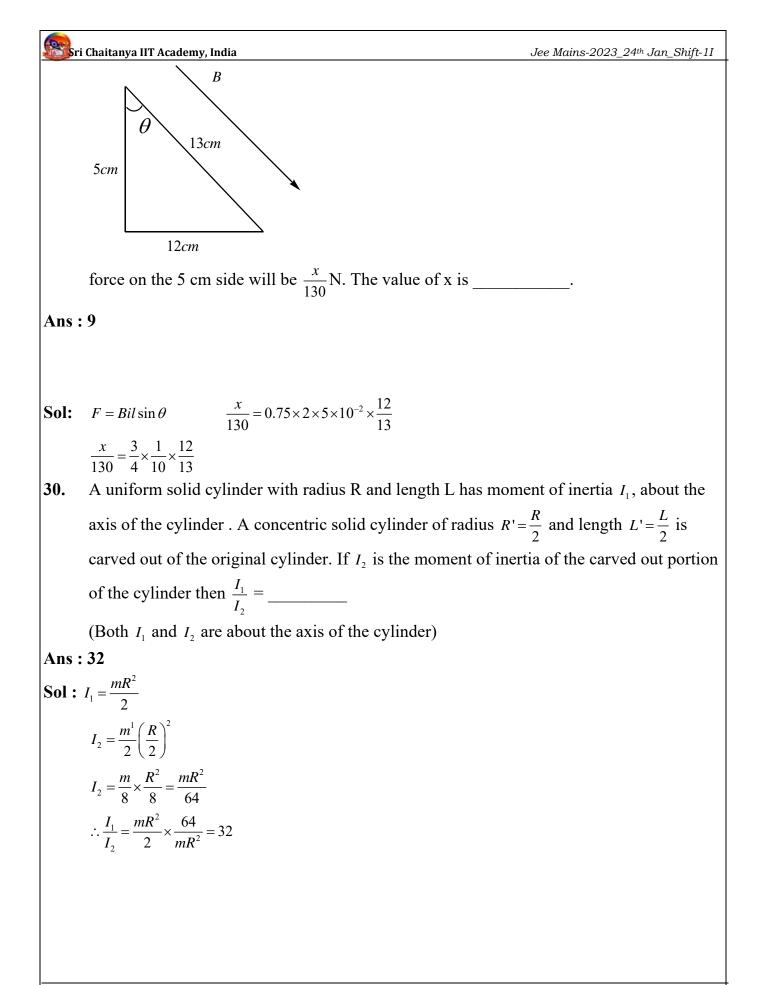
Where $R_{eff} = \frac{12}{2} = 4\Omega$

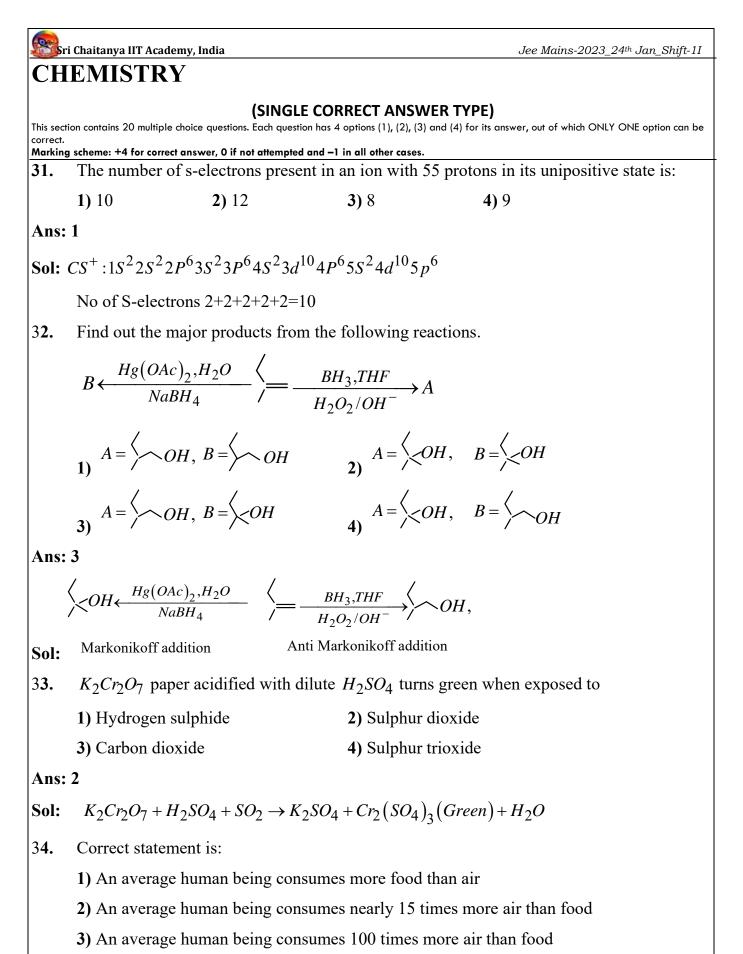
27. A mass m attached to free end of a spring executes SHM with a period of 1s. If the mass is increased by 3 kg the period of oscillation increases by one second, the value of mass m is _____ kg.

Ans:
$$m = 1$$

Sol: $T = 2\pi \sqrt{\frac{m}{k}}$ $T\alpha \sqrt{m}$ $\frac{T_2}{T_1} = \sqrt{\frac{m+3}{m}}$ $\frac{2}{1} = \sqrt{\frac{m+3}{m}}$
 $\frac{4}{1} = \frac{m+3}{m}$ $4m = m+3$ $3m = 3$ $m = 1$

28. A convex lens of refractive index 1.5 and focal length 18cm in air is immersed in water .The change in focal length of the lens will be _____cm.


(Given refractive index of water = $\frac{4}{3}$)


Ans : 54 cm

Sol:
$$\left(\frac{\mu_g}{\mu_{air}} - 1\right) f_{air} = \left(\frac{\mu_g}{\mu_{liq}} - 1\right) f_{liq}$$

 $\left(\frac{1.5}{1} - 1\right) 18 = \left(\frac{3/2}{4/3} - 1\right) f_{liq}$
 $\therefore f_{liq} = 72cm$
 $\Delta f = f_{liq} - f_{air}$
 $= 72 - 18$ $\Delta f = 54cm$

29. A single turn current loop in the shape of a right angle triangle with sides 5 cm , 12 cm ,
13 cm is carrying a current of 2 A. The loop is in a uniform magnetic field of magnitude
0.75 T whose direction is parallel to the current in the 13 cm side of the loop. The magnitude of the magnetic

Jee Mains-2023_24th Jan_Shift-11

4) An average human being consumes equal amount of food and air

Jee Mains-2023_24th Jan_Shift-11

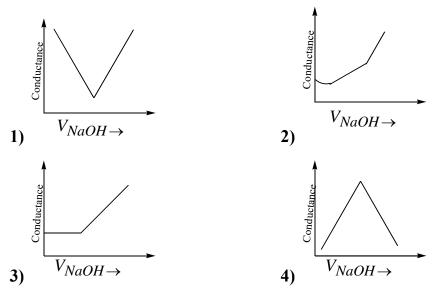
Page 14

Ans: 2

- Sol: An average human being consumes nearly 15 times more air than food
- **35.** Given below are two statements:

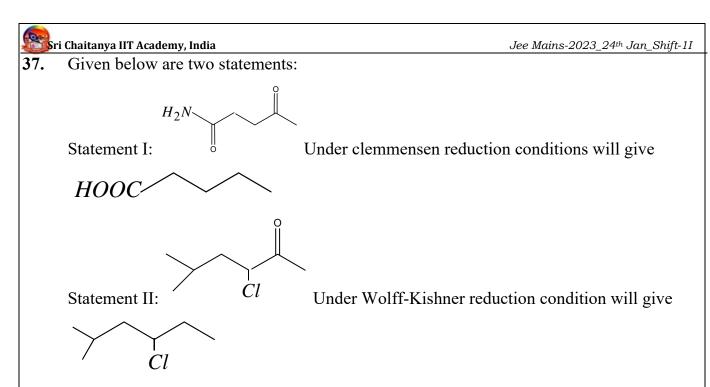
Statement-I: Pure Aniline and other arylamines are usually colourless.

Statement-II: Arylamines get coloured on storage due to atmospheric reduction


In the light of the above statements, choose the most appropriate answer from the options given below:

1) Statement I is incorrect but Statement II is correct

- 2) Both Statement I and Statement II are correct
- 3) Statement I is correct but Statement II is incorrect
- 4) Both Statement I and Statement II are incorrect


Ans: 3

- **Sol:** Pure Aniline and other arylamines are usually colourless. But they become coloured on storage due to atmospheric oxygen. Aniline develops a yellow to brown colour due to this reason
- **36.** Choose the correct representation of conductometric titration of benzoic acid vs sodium hydroxide.

Ans: 2

Sol: Benzoic acid is a weak acid, initially conductance low, by addition of strong base NaOH Conductance increases, after reacting end point conductance increased by strong base NaOH

In the light of the above statements, choose the correct answer from the options given below:

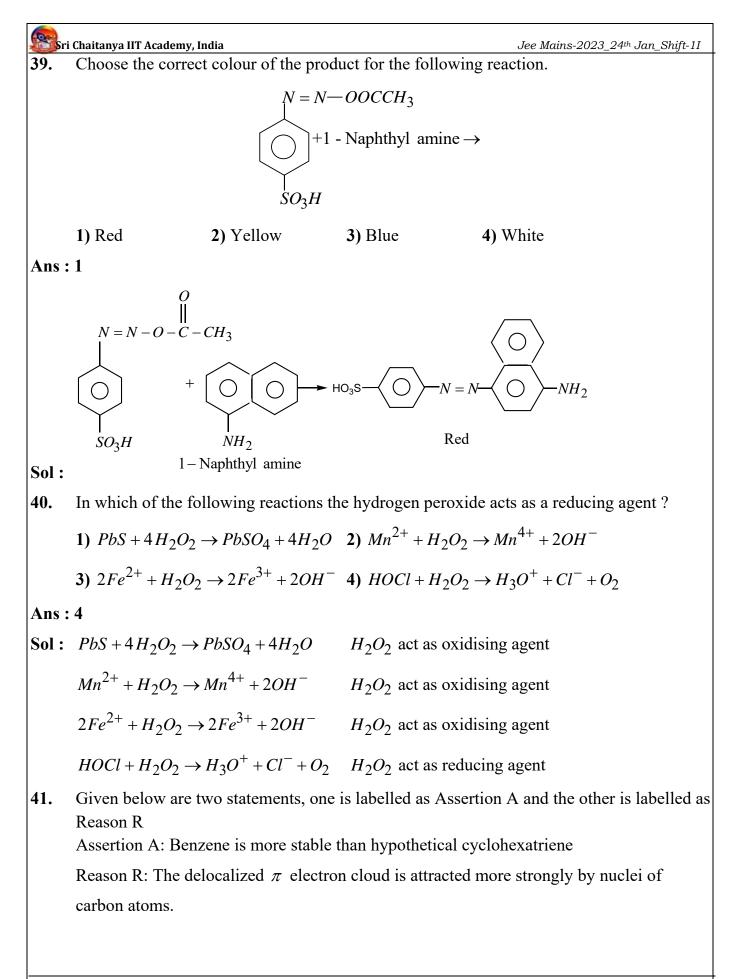
1) Both Statement I and Statement II are true

2) Statement I is false but Statement II is true

3) Both Statement I and Statement II are false

4) Statement I is true but Statement II is false

Ans: 2


Sol: In clemmensen reduction aldehyde and keto groups are reduced to corresponding hydrocarbon in presence of Zn/Hg

38. What is the number of unpaired electron(s) in the highest occupied molecular orbital of the following species $N_2; N_2^+; O_2; O_2^+$?

1) 2, 1, 2, 1 **2)** 2, 1, 0, 1 **3)** 0, 1, 0, 1 **4)** 0, 1, 2, 1

Ans: 4

Sol:
$$N_2: \sigma_{1s}^2 < \sigma_{1s}^{*2} < \sigma_{2s}^2 < \sigma_{2s}^{*2} < \pi_{2p_x}^2 = \pi_{2p_y}^2 < \sigma_{2p_z}^2 \to 0$$

 $N_2^+: \sigma_{1s}^2 < \sigma_{1s}^{*2} < \sigma_{2s}^2 < \sigma_{2s}^{*2} < \pi_{2p_x}^2 = \pi_{2p_y}^2 < \sigma_{2p_z}^1 \to 1$
 $O_2: \sigma_{1s}^2 < \sigma_{1s}^{*2} < \sigma_{2s}^2 < \sigma_{2s}^{*2} < \sigma_{2p_z}^2 < \pi_{2p_x}^2 = \pi_{2p_y}^2 < \pi_{2p_x}^{*1} = \pi_{2p_y}^{*1} \to 2$
 $O_2^+: \sigma_{1s}^2 < \sigma_{1s}^{*2} < \sigma_{2s}^2 < \sigma_{2s}^{*2} < \sigma_{2p_z}^2 < \pi_{2p_x}^2 = \pi_{2p_y}^2 < \pi_{2p_x}^{*1} = \pi_{2p_y}^{*0} \to 1$

Jee Mains-2023_24th Jan_Shift-11

In the light of the above statements, choose the correct answer from the options given below:

1) Both A and R are correct but R is NOT the correct explanation of A

2) A is true but R is false

3) Both A and R are correct and R is the correct explanation of A

4) A is false but R is true

Ans:3

Sol: A: Benzene is more stable than hypothetical cyclohexatriene (Correct)

R: The delocalized π electron cloud is attracted more strongly by nuclei of carbon atoms.

(Correct)

42. Match List I with List II

	List I Type	List II Name	
A.	Antifertility drug		Norethindrone
В.	. Tranquilizer		Meprobomate
C.	C. Antihistamine		Seldane
D.	Antibiotic	IV.	Ampicillin

Choose the correct Answer from the options given below:

 1) A-I, B-II, C-III, D-IV
 2) A-I, B-III, C-II, D-IV

3) A-IV, B-III, C-II, D-I **4**) A-II, B-I, C-III, D-IV

Ans:1

Sol: Antifertility drug – Norethindrone

Tranquilizer-Me probomate

Antihistamine-Seldane

Antibiotic - Ampicillin

43. Given below are two statements, one is labelled as Assertion A and the other is labelled as Reason R

Assertion A: Beryllium has less negative value of reduction potential compared to the other alkaline earth metals.

Reason R: Beryllium has large hydration energy due to small size of Be^{2+} but relatively

large value of atomization enthalpy

Jee Mains-2023_24th Jan_Shift-11

In the light of the above statements, choose the most appropriate answer from the options given below

1) A is correct but R is not correct

2) A is not correct but R is correct

3) Both A and R are correct but R is NOT the correct explanation of A

4) Both A and R are correct and R is the correct explanation of A

Ans: 3

Sol: A: Beryllium(-1.97) has less negative value of reduction potential compared to the other alkaline earth metals. (Correct)

R: Beryllium has large hydration energy due to small size of Be^{2+} but relatively large value of atomization enthalpy (Correct)

44. Which one amongst the following are good oxidizing agents?

A. Sm^{2+}

- B. *Ce*²⁺
- C. *Ce*⁴⁺
- D. *Tb*⁴⁺

Choose the most appropriate answer from the options given below:

```
1) C and D only 2) A and B only 3) C only 4) D only
```

Ans: 1

Sol: $Ce^{+4} \& Tb^{+4}$ are good oxidizing agents

45. Identify the correct statements about alkali metals.

A. The order of standard reduction potential $(M^+|M)$ for alkali metal ions is

Na > Rb > Li.

B. CsI is highly soluble in water.

C. Lithium carbonate is highly stable to heat.

D. Potassium dissolved in concentrated liquid ammonia is blue in colour and paramagnetic.

E. All the alkali metal hydrides are ionic solids.

Choose the correct answer from the options given below.

1) A, B, D only 2) A and E only 3) C and E only 4) A, B and E only

Ans: 2

Sol: (A) SRP of Li = -3004

SRP of Na = -2)715

SRP of Rb = -2.9

(B) CsI is least soluble

- (C) Li_2CO_3 is not stable to heat
- (E) All the alkali metal hydrides are ionic and having high melting points.

46. A student has studied the decomposition of a gas AB_3 at $25^{\circ}C$. He obtained the following data.


P(mm Hg)	50	100	200	400
Relative $t_{1/2}(s)$	4	2	1	0.5

The order of the reactions is

 1) 1
 2) 2
 3) 0.5
 4) 0 (zero)

Ans: 2

Sol:
$$\frac{(t_{1/2})_1}{(t_{1/2})_2} = \left(\frac{a_2}{a_1}\right)^{n-1}$$

 $2 = 2^{n-1} \implies 2^{n-1} = 2^1 \implies n-1=1 \implies n=2$
47. Which will undergo deprotonation most readily in basic medium?
 $\therefore a$
 $MeO \xrightarrow{f} OMe$
1) Both a and c 2) a only 3) b only 4) c only
Ans: 2
Sol: Due to presence of two electron withdrawing carbonyl group. Methylene protons are very much acidic
48. The hybridization and magnetic behaviour of cobalt ion in $\left[Co(NH_3)_6\right]^{3+}$ complex, respectively is
1) Sp^3d^2 and diamagnetic 2) Sp^3d^2 and paramagnetic
Jee Mains-2023_24th Jan_Shift-11
Page 20

51.	Chaitanya IIT Academy, IndiaJee Mains-2023_24th Jan_Shift-11Total number of tripeptides possible by mixing of valine and proline is
Ans:	
Sol:	No. of Tripeptides = $2^3 = 8$
52.	The number of statements which are the characteristics of physisorption is
	A. It is highly specific in nature
	B. Enthalpy of adsorption is high
	C. It decreases with increases in temperature
	D. it results into unimolecular layer
	E. No activation energy is needed
Ans:	2
Sol:	C, E (2)
	Statement A, B, D are for chemical adsorption
	Statement C, E are for physical adsorption
53.	The number of statements, which are correct with respect to the compression of carbon
	dioxide from point (a) in the Andrews isotherm from the following is
	f = 0
	1. Carbon dioxide remains as a gas upto point (b)
	2. Liquid carbon dioxide appears at point (c)
	3. Liquid and gaseous carbon dioxide coexist between points (b) and (c)
	4. As the volume decreases from (b) to (c), the amount of liquid decreases
Ans:	3

Sol: A, B, C [3]

 CO_2 exist as a gas from a to b line

At point 'C' Liquification stats

From $b \rightarrow c$ both liquid & gases CO_2 coexist

Sri Chaitanya IIT Academy, IndiaJee Mains-2023_24th Jan_Shift-1154. the number of units, which are used to express concentration of solution from the

following is____

Mass percent, Mole, Mole fraction, Molarity, ppm, Molality

Ans: 5

- Sol: 5 Concentration terms: molarity, molality, mole fraction, mass percent, ppm
- 55. If the pKa of lactic acid is 5, then the pH of 0.005 M calcium lactate solution at $25^{\circ}C$ is_____× 10^{-1} (Nearest integer)

Lactic acid
$$CH_3 - C - COOH$$

Sol:

$$pH = 7 + \frac{1}{2}p^{Ka} + \frac{1}{2}\log c = 7 + \frac{1}{2} \times 5 + \frac{1}{2} \left[\log \left(5 \times 10^{-3} \right) \right]$$
$$= 7 + 2.5 + \frac{1}{2} \left[-3 + 0.6990 \right] = 7 + 2.5 + \frac{1}{2} \left[-2.3010 \right]$$
$$= 9.5 - 1.15 = 8.35 = 84 \times 10^{-1}$$

56. The total pressure observed by mixing two liquids A and B is 350 mm Hg when their mole fractions are 0.7 and 0.3 respectively.

The total pressure becomes 410 mm Hg if the mole fractions are changed to 0.2 and 0.8 Respectively for A and B. The vapour pressure of pure A is _____ mm Hg. (Nearest integer)

Consider the liquids and solutions behave ideally.

Ans: 314

Sol:
$$P = P_A^{\circ} X_A + P_B^{\circ} X_B$$

 $350 = P_A^{\circ} \times 0.7 + P_B^{\circ} \times 0.3 \rightarrow (1)$
 $410 = P_A^{\circ} \times 0.2 + P_B^{\circ} \times 0.8 \rightarrow (2)$
 $(1) \times 8 - 3 \times (2)$: $2800 = 5.6 \times P_A^{\circ}$
 $1230 = 0.6 \times P_A^{\circ}$

$$=1570 = 5 \times P_A^{\circ} \Longrightarrow \frac{1570}{5} = 314$$

57. maximum number of isomeric monochloro derivatives which can be obtained from 2,2,5,5-

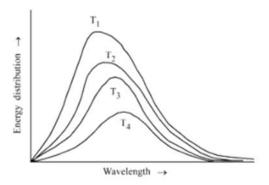
Tetramethyl hexane by chlorinations is

Ans: 3

Sol: No of different carbon atoms in the molecule is 3

Sum of π - bonds present in peroxodisulphuric acid and pyrosulphuric acid is 58.

Ans: 8


Sol:

Peroxy disulphuric acid
$$H_2S_2O_8$$
: $HO - S - O - O - S - OH$

huric acid
$$H_2S_2O_7: HO - S - O - S - OH$$

Pyro sulp

59. Following figure shows spectrum of an ideal black body at four different temperatures. The number of correct statements from the following is_

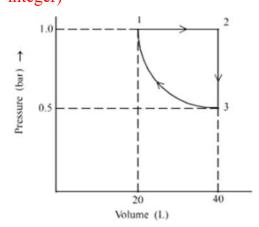
A. $T_4 > T_3 > T_2 > T_1$

B. The black body consists of particles performing simple harmonic motion.

C. the peak of the spectrum shifts to shorter wavelength as temperature increases.

D.
$$\frac{T_1}{v_1} = \frac{T_2}{v_2} = \frac{T_3}{v_3} \neq \text{ constant}$$

Jee Mains-2023 24th Jan Shift-11

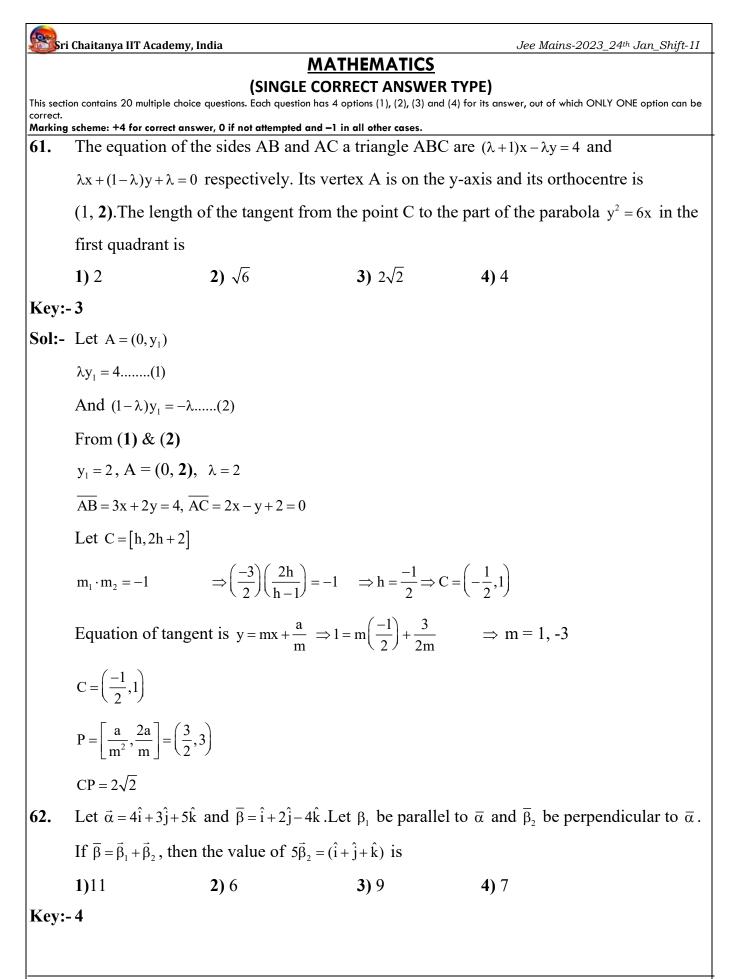


E. The given spectrum could be explained using quantisation of energy.

Ans: 2

Sol: C and E are correct

60. One mole of an ideal monoatomic gas is subjected to changes as shown in the graph. The magnitude of the work done (by the system or on the system) is _____ J (nearest integer)


Given: $\log 2 = 0.3$

In 10 = 2.3

Ans: 620

Sol:

 $w: 1 \to 2: \text{ isobaric}: w = -p(v_2 - v_1) = -1(40 - 20) = -20Lbar$ $w: 2 \to 3: \text{ isochoric}: w = -p\Delta v = 0$ $w: 3 \to 1: \text{ isothermal}: w = 2.303nRT \log \frac{v_2}{v_1}$ $= -1 \times 20 \times \ln \frac{20}{40} = -13.8$ $w = w_{1 \to 2} + w_{2 \to 3} + w_{3 \to 1}$ = -20 + 0 + 138 = -6.2 L bar = -620 J

Sri Chaitanya IIT Academy, India

Sol:- Given $\vec{\beta}_1$ parallel to $\vec{\alpha} \Rightarrow \vec{\beta}_1 = t\vec{\alpha}$ $\vec{\beta}_2$ perpendicular to $\vec{\alpha} \Rightarrow \vec{\beta}_2 \cdot \vec{\alpha} = 0$ $\vec{\beta} = \vec{\beta}_1 + \vec{\beta}_2$ Now do dot product with $\vec{\alpha}$ on both sides $\vec{\alpha} \cdot \vec{\beta} = \vec{\beta}_1 \cdot \vec{\alpha} + \vec{\beta}_2 \vec{\alpha} \quad (\vec{\beta}_2 \cdot \vec{\alpha} = 0)$ $(4\hat{i} + 3\hat{j} + 5\hat{k})(\hat{i} + 2\hat{j} - 4\hat{k}) = (t\vec{\alpha}) \cdot \vec{\alpha} + 0 \quad (\vec{\beta}_1 = t\vec{\alpha})$ $4 + 6 - 20 = t(16 + 9 + 25) + 0 \quad -10 = t(50) \Rightarrow t = \frac{-1}{5}$ $\vec{\beta}_1 = \frac{-1}{5}(4\hat{i} + 3\hat{j} + 5\hat{k})$ From $\vec{\beta} = \vec{\beta}_1 + \vec{\beta}_2$ $\vec{\beta}_2 = \vec{\beta} - \vec{\beta}_1 = (i + 2j - 4k) - (\frac{-1}{5}(4i + 3j + 5k))$ $\vec{\beta}_2 = \frac{1}{5}(9\hat{i} + 13\hat{j} - 15\hat{k}) \quad 5\vec{\beta}_2 \cdot (\hat{i} + \hat{j} + \hat{k}) = 9 + 13 - 15$ $5\vec{\beta}_2 \cdot (\hat{i} + \hat{j} + \hat{k}) = 7$

- **63.** The number of integers greater than 7000 that can be formed using the digits 3, 5, 6, 7, 8 without repetition is
 - **1**) 48 **2**) 120 **3**) 168 **4**) 220

Key:-3

Sol:- Given digits are 3, 5, 6, 7, 8

i) Four digits numbers starts with 7, 8

$$\begin{array}{c} \hline 7,8 \\ \hline \\ 2 \times 4 P_3 = \end{array} \begin{array}{c} \hline \\ 48 \end{array}$$

ii) Five digit numbers

$$\underbrace{ \begin{array}{c} \\ \\ \end{array} \end{array} } \underbrace{ \begin{array}{c} \\ \end{array} } = {}^{5}P_{4} \\ = {}^{120} \end{array}$$

= 120 + 48 = 168

Jee Mains-2023_24th Jan_Shift-11

64. If the system of equations

$$x + 2y + 3z = 3$$

$$4x + 3y - 4z = 4$$

$$8x + 4y - \lambda z = 9 + \mu$$
Has infinitely many solutions, then the ordered pair (λ, μ) is equal to
1) $\left(-\frac{72}{5}, -\frac{21}{5}\right)$ 2) $\left(-\frac{72}{5}, \frac{21}{5}\right)$ 3) $\left(\frac{72}{5}, -\frac{21}{5}\right)$ 4) $\left(\frac{72}{5}, \frac{21}{5}\right)$
Kcy:-3
Sol:- $x + 2y + 3z = 3$
 $4 + 3y - 4z = 4$
 $8x + 4y - \lambda z = 9 + \mu$ has infinitely solution $(\lambda, \mu) =$
 $\Lambda = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 3 & -4 \\ 8 & 4 & -\lambda \end{vmatrix} = 0 \Rightarrow 5\lambda - 72 = 0 \Rightarrow \lambda = \frac{72}{5}$
65. If $f(x) = x^3 - x^2 f^4(x) + x f^{11}(2) - f^{111}(3), x \in \mathbb{R}$, then
1) $3f(1) + f(2) = f(3)$ 2) $2f(0) - f(1) + f(3) = f(2)$
3) $f(3) - f(2) = f(1)$ 4) $f(1) + f(2) + f(3) = f(0)$
Key:-2
Sol:- Let $f(x) = x^3 + bx^3 + cx + d$
 $f^{11}(x) = 6$
Given, $f(x) = x^3 - x^2 f^4(x) + x f^{11}(2) - f^{111}(3)$
 $x^3 + bx^2 + cx + d = x^3 - x^2 (3 + 2b + c) + x(12 + 2b) - 6$
By comparing coefficients
 $-b = 3 + 2b + c$ $c = 12 + 2b$
 $-3 = 3b + c$ (1) $2b - c = -12$ (2)

Eq. (1) & (2)

3b + c = -32b - c = -125b = -15b = -3, c = 6, d = -6 $f(x) = x^3 - 3x^2 + 6x - 6$ From option 2 2f(0) - f(1) + f(3) = f(2)2(-6) - (-2) + 12 = 2The value of $\left(\frac{1+\sin\frac{2\pi}{9}+i\cos\frac{2\pi}{9}}{1+\sin\frac{2\pi}{9}-i\cos\frac{2\pi}{9}}\right)^{T}$ is 66. **1)** $-\frac{1}{2}(\sqrt{3}-i)$ **2)** $\frac{1}{2}(\sqrt{3}+i)$ **3)** $\frac{1}{2}(1-i\sqrt{3})$ **4)** $-\frac{1}{2}(1-i\sqrt{3})$ Key:-1 **Sol:-** $E = \left(\frac{1 + \sin\frac{2\pi}{9} + i\cos\frac{2\pi}{9}}{1 + \sin\frac{2\pi}{9} - i\cos\frac{2\pi}{9}}\right)^{2}$ $= \left| \frac{1 + \cos\left(\frac{\pi}{2} - \frac{2\pi}{9}\right) + i\sin\left(\frac{\pi}{2} - \frac{2\pi}{9}\right)\cos\left(\frac{\pi}{4} - \frac{\pi}{9}\right)}{1 + \cos\left(\frac{\pi}{4} - \frac{2\pi}{9}\right) + i2\sin\left(\frac{\pi}{4} - \frac{\pi}{9}\right)\cos\left(\frac{\pi}{4} - \frac{\pi}{9}\right)} \right|^{2}$ $= \left| \frac{2\cos\left(\frac{\pi}{4} - \frac{\pi}{9}\right) \left\{ \cos\left(\frac{\pi}{4} - \frac{\pi}{9}\right) + i\sin\left(\frac{\pi}{4} - \frac{\pi}{9}\right) \right\}}{2\cos\left(\frac{\pi}{4} - \frac{\pi}{9}\right) \left\{ \cos\left(\frac{\pi}{4} - \frac{\pi}{9}\right) - i\sin\left(\frac{\pi}{4} - \frac{\pi}{9}\right) \right\}} \right|$ $= \left| \operatorname{cis} \left\{ 3 \left(\frac{3\pi}{4} - \frac{\pi}{9} \right) \right\} - \left\{ 3 \left(\frac{\pi}{4} - \frac{\pi}{9} \right) \right\} \right|$ $= \operatorname{cis} \frac{5\pi}{6} + \operatorname{i} \operatorname{sin} \frac{5\pi}{6}$

Jee Mains-2023_24th Jan_Shift-11

Jee Mains-2023_24th Jan_Shift-11

Page 29

u sr	1 Chaltanya IIT Academy	, India		Jee Mains-2023_24 th Jan_Shift-
	$= -\frac{1}{2}(\sqrt{3} - i)$			
67.	The locus of the	mid point of the cho	ords of the circle ($C_1: (x-4)^2 + (y-5)^2 = 4$ which subt
	an angle θ_1 at the	e centre of the circle	C_1 , is a circle of 1	radius r_1 . If $\theta_1 = \frac{\pi}{3}, \theta_3 = \frac{2\pi}{3}$ and
	$r_1^2 = r_2^2 + r_3^2$, then 6			3 3
		_	3) ^{3π}	π
	1) $\frac{\pi}{4}$	2) $\frac{\pi}{6}$	3) $\frac{3\pi}{4}$	4) $\frac{\pi}{2}$
Key:				
Sol:-	$\theta_1 = \frac{\pi}{3}, \ \theta_2 = \frac{2\pi}{3}, \ I$	$P(x_1, y_1)$ be the mid p	oint of the chord	AB
	Then $\frac{\sqrt{(x-4)^2+6}}{2}$	$\frac{(y-5)^2}{2} = \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$		
	\Rightarrow r ₁ = $\sqrt{3}$			
	Similarly $r_3 = 1$			
	Given $r_1^2 = r_2^2 + r_3^2$	\Rightarrow r ₂ = $\sqrt{2}$	$\therefore \theta = \frac{\pi}{4}$	
68.	Let $y = y(x)$ be the	he solution of the dif	fferential equation	$(x^2 - 3y^2)dx + 3xydy = 0, y(1) = 1.$
	Then $6y^2(e)$ is each of the formula of the theorem of the theor	qual to		
	1) 3e ²	2) e ²	3) $\frac{3}{2}e^{2}$	4) 2e ²
Key:	- 2			
Sol:-	Put $y = vx$ and v	variables separable th	hen $6[y(e)]^2 = 2e^2$	
69.	Let A be a 3 x 3	matrix such that adj	$j(adj(adjA)) = 12^4 \cdot T$	hen $ A^{-1}adjA $ is equal to
	1) 12	2) 2√3	3) 1	4) $\sqrt{6}$
Key:				
Sol:-	$ \mathbf{A} = 2\sqrt{3}$			
-	Let n and a be tw	vo statements. Then	$\sim (p \land (p \Rightarrow \sim q))$ is	equivalent to
70.	Let p und q be to			
	1) $p \lor ((\sim p) \land q)$	2) (~ p) ∨ q	3) $p \lor (p \land q)$	4) $p \lor (p \land (\sim q))$
Key:	1) p∨((~p)∧q) -2		3) p∨(p∧q)	4) $p \lor (p \land (\sim q))$
70. Key: Sol:-	1) $p \lor ((\sim p) \land q)$		3) p∨(p∧q)	4) p∨(p∧(~q))

Sri Chaitanya IIT Academy, India $= \sim p \lor \{\sim (p \Rightarrow \sim q) = \\ = \sim p \lor q$ 71. $\int_{\frac{3\sqrt{5}}{4}}^{\frac{3\sqrt{5}}{4}} \frac{48}{\sqrt{9-4x^{2}}} dx \text{ is equal to}$ 1) 2π 2) $\frac{\pi}{2}$ 3) $\frac{\pi}{3}$ 4) $\frac{\pi}{6}$ Key:-1 Sol:- $\int_{\frac{3\sqrt{5}}{4}}^{\frac{3\sqrt{5}}{4}} \frac{48}{\sqrt{3^{2}-(2x)^{2}}} dx = 48 \cdot \frac{1}{2} \sin^{-1} \left(\frac{2x}{3}\right)^{\frac{3\sqrt{5}}{4}}_{\frac{3\sqrt{5}}{4}}$ $= 24 \left(\sin^{-1} \left(\frac{2}{3} \cdot \frac{3\sqrt{3}}{4}\right) - \sin^{-1} \left(\frac{2}{3} \cdot \frac{3\sqrt{2}}{4}\right) \right)$ $= 24 \left(\sin^{-1} \left(\frac{\sqrt{3}}{2}\right) - \sin^{-1} \left(\frac{1}{\sqrt{2}}\right) \right)$ $= 24 \left(\frac{\pi}{3} - \frac{\pi}{4} \right) = 24 \left(\frac{\pi}{12} \right) = 2\pi$

72. If the foot of the perpendicular drawn from (1, 9, 7) to the line passing through the point (3, 2, 1) and parallel to the plane x + 2y + z = 0 and 3y - z = 3 is (α, β, γ) , then $\alpha + \beta + \gamma$ is equal to

3) 3

4) 5

Key:-4

1) – 1

Sol:-
$$L = \frac{x-3}{\ell} = \frac{y-2}{m} = \frac{z-1}{n}$$

 $\pi_1 = x + 2y + z = 0, \quad \pi_2 = 3y - z = 3$
 $L / / \pi_1 \Longrightarrow \ell + 2m + n = 0$
 $L / / \pi_2 \Longrightarrow 3m - n = 0$
 $P^{(1,9,7)}$
 Q
 L
 2
 1
 1
 2
 1
 1
 2
 1
 1
 2

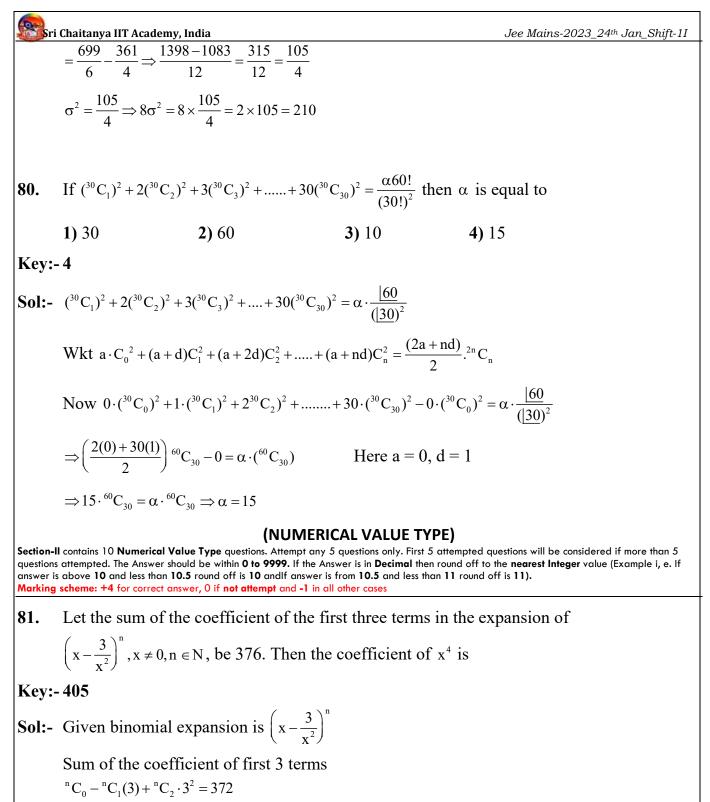
2) 1

Jee Mains-2023_24th Jan_Shift-11

Page 31

-1 3 0 3 $\frac{\ell}{5} = \frac{m}{-1} = \frac{n}{-3}$ $\frac{x-3}{5} = \frac{y-2}{-1} = \frac{z-1}{-3} = t$ Q = (5t + 3, 2 - t, 1 - 3t)d.r's of PQ = (5t+2, -7-t, -6-3t)PQ perpendicular $\Rightarrow 5(5t+2)-1(-7-t)-3(-6-3t)$ = 25t + 10 + 7 + t + 18 + 9t = 0 $35t = -35 \Longrightarrow t = -1$ $Q = (-2,3,4) = (\alpha,\beta,\gamma)$ $\alpha + \beta + \gamma = -2 + 3 + 4 = 7 - 2 = 5$ Let f(x) be a function such that $f(x+y) = f(x) \cdot f(y)$ for all $x, y \in N$. If f(1) = 3 and 73. $\sum_{k=1}^{n} f(k) = 3279$ then the value of n is 1)6 **3)** 7 2) 8 4)9 Key:-3 **Sol:-** $f(x) = a^x$ satisfies $f(x) + f(y) = f(x) \cdot f(y)$ $f(1) = a^1 \Longrightarrow 3 = a$ $\therefore f(x) = a^x = 3^x$ $\sum_{k=1}^{n} f(x) = 3279 \qquad \qquad 3 + 3^2 + 3^3 + \dots + 3^n = 3279$ $\frac{3(3^{n}-1)}{2} = 3279 \qquad 3^{n}-1 = 2186 \Longrightarrow 3^{n} = 2187 = 3^{7} \Longrightarrow n = 7$ The number of square matrices of order 5 with entries from the set $\{0, 1\}$, such that the 74. sum of all the elements in each row is 1 and the sum of all the elements in each column is also 1 is 1) 125 **2)** 150 **3)** 225 4) 120 Key:-4

Sri	i Chaitanya IIT Academy	, India		Jee Mains-2023_24 th Jan_Shift-11
Sol:-	$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	0 0 0 0 1		
	Number of such	matrices $= 5! = 120$)	
75.	The number of r	eal solutions of the	equation $3(x^2 +$	$\left(\frac{1}{x^2}\right) - 2\left(x + \frac{1}{x}\right) + 5 = 0$ is
	1) 4	2) 2	3) 3	4) 0
Key:-	-	4		
Sol:-	$3\left[\left(x+\frac{1}{x}\right)^2-2\right]-2\left(x+\frac{1}{x}\right)^2$	$x + \frac{1}{x} + 5 = 0$		
	Put x + $\frac{1}{x}$ = y	$3(y^2-2)-2y+5=$	0	
	$3y^2 - 2y - 1 = 0$	$3y^2 - 2y + 1 = 2 \Longrightarrow$	$(3y-1)^2 = 2$	
	$3y-1=\pm\sqrt{2}$	$3\left(x+\frac{1}{x}\right)-1\pm\sqrt{2}=$	= 0	
	$3(x^2+1)+x(-1\pm\sqrt{2})$	$\sqrt{2}$) = 0 \Rightarrow 3x ² + (-1±	$\sqrt{2}\mathbf{)}\mathbf{x}+3=0$	
	$3x^2 - (1 + \sqrt{2})x + 3$	= 0	$3x^2 + (\sqrt{2} - 2)$	1)x + 3 = 0
	$D_1 = (1 + \sqrt{2})^2 4(3)($	$(3) < 0, \ D_2 = (\sqrt{2} - 1)^2$	-4(3)(3) < 0	
	No, of real roots	= 0		
76.	If $f(x) = \frac{2^{2x}}{2^{2x} + 2}$, x	$\mathbf{x} \in \mathbf{R}$, then $f\left(\frac{1}{2023}\right)$	$+ f\left(\frac{2}{2023}\right) + \dots + f$	$\left(\frac{2022}{2023}\right)$ is equal to
	1) 2011	2) 2010	3) 1011	4) 1010
Key:-				
Sol:-	$f(x) = \frac{2^{2x}}{2^{2x} + 2}, x \in$	R		
	$f(x) = \frac{4^x}{4^x + 2}$	$f(x) + f(1-x) = \frac{4}{4^x}$	$\frac{4^{x}}{+2} + \frac{4^{1-x}}{4^{1-x}+2}$	
	$=\frac{4^{x}}{4^{x}+2}+\frac{4}{4+2\cdot 4^{x}}$	$-=\frac{4^{x}+2}{4^{x}+2}=1$	\Rightarrow f(x)+f(1	(-x) = 1
	Now			
Ioo Ma	uins-2023_24 th Jan_Shi	ft 11		Page 33

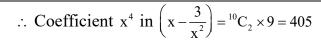

Jee Mains-2023_24th Jan_Shift-11

Res r	ri Chaitanya IIT Academy,	India		Jee Mains-2023_24 th Jan_Shift-11				
	$f\left(\frac{1}{2023}\right) + f\left(\frac{2}{2023}\right)$	f $+ \dots + f\left(\frac{2022}{2023}\right)$						
	$= f\left(\frac{1}{2023}\right) + f\left(\frac{2022}{2023}\right) + f\left(\frac{2}{2023}\right) + f\left(\frac{2021}{2023}\right) + \dots + f\left(\frac{1011}{2023}\right) + f\left(\frac{1012}{2023}\right)$							
	= 1 + 1 + 1 +	1011 times = 1011						
77.	The set of all values of a for which $\lim_{x\to a} ([x-5]-[2x+2]) = 0$, where $[\alpha]$ denotes the gr							
	integer less than	or equal to α is equ	al to					
	1) [-7.5, -6.5]	2) (-7.5, -6.5)	3) [-7.5, -6.5)	4) (-7.5, -6.5)				
Key:	- 3							
Sol:-	$ \underset{x \to a}{\text{Lt}}([x-5]-[2x+2])$	(2]) = 0						
	\Rightarrow [a-5]-[2a+2]	= 0						
	\Rightarrow [a-5] = [2a+2]							
	Here a ∈[-7.5,-6.	5)						
78.	Let the plane cor	ntaining the line of in	ntersection of the p	lane P1: $x + (\lambda - 4)y - 4y + z = 1$ and				
	P2: 2x + y + z = 2	pass through the poi	nt $(0, 1, 0)$ and $(1,$	0, 1). Then the distance of the				
	point $(2\lambda,\lambda,-\lambda)$ f	from the plane P2 is						
	1) 5√6	2) 4√6	3) 3√6	4) 2√6				
Key:	- 3							
Sol:-	$P_1: x + (\lambda + 4)y + z$	-1 = 0						
	$P_2: 2x + y + z - 2 =$	0						
	Equation of the p	plane containing the	line of intersection	of the plane P1 and P2 is				
	of the from $P_1 + t$	$P_{2} = 0$						
	\Rightarrow [x+(λ +4)y+z	-1]+t[2x+y+z-2] =	0(1)					
	Eq. (1) pass thro	ugh (0, 1, 0) & (1, 0	, 1)					
	i.e., $[(\lambda + 4) + t] - 1$	-2t = 0						
	$\Longrightarrow \lambda - t + 3 = 0$	(2)						
	Also $(1+2t) + (1+$	$\mathbf{t}) - 1 - 2\mathbf{t} = 0 \Longrightarrow \mathbf{t} = -1.$	(3)					
	Eq. (2) & (3) λ+	$1+3=0 \Longrightarrow \lambda = -4$						
	Now $(2\lambda, \lambda, -\lambda) =$	(-8,-4,4)						
Ing Ma	ains-2023_24 th Jan_Shij	A 11		Page 34				

Jee Mains-2023_24th Jan_Shift-11

Sri	sri Chaitanya IIT Academy, India			Jee Mains-2023_24th Jan_Shift-11		
	Then distan	ce from (-8, -4, 4) to	P2 is			
	$=\frac{ ax_{1}+by_{1}+x_{1}+by_{1}+x_{2}+by_{1$	$\frac{ \mathbf{c}\mathbf{z}_1 + \mathbf{d} }{ \mathbf{c}^2 + \mathbf{c}^2 }$				
	$=\frac{ 2(-8)+(-4) }{\sqrt{4+2}}$	$\frac{4)+(4)-2 }{\sqrt{6}} = -16-4+1000000000000000000000000000000000000$	$\frac{ 4-2 }{\sqrt{6}} = \frac{18}{\sqrt{6}} = 3\sqrt{6}$			
79.	Let the six r	numbers a_1, a_2, a_3, a_4, a_5	$_{5}$, a_{6} be in A.P and a	$a_1 + a_3 = 10$. If the mean of these six		
	numbers is	$\frac{19}{2}$ and their variance	e is σ^2 , then $8\sigma^2$ is	equal to		
	1) 105	2) 200	3) 210	4) 220		
Key:	- 3					
Sol:-	Given a_1, a_2 ,	a_3, a_4, a_5, a_6 are in A.F.)			
	Let $T_1 = a_1 =$	a				
	Common di	fference =d				
	Also given $a_1 + a_3 = 10$					
	\Rightarrow a + a + 2d =	$=10 \Longrightarrow 2a + 2d = 10$	(1)			
	Mean of six numbers is $\frac{19}{2}$					
	$\Rightarrow \frac{\mathbf{a}_1 + \mathbf{a}_2 + \mathbf{a}_3}{\mathbf{a}_1 + \mathbf{a}_2 + \mathbf{a}_3}$	$\frac{a_3 + a_4 + a_5 + a_6}{6} = \frac{19}{2}$				
	\Rightarrow a + (a + d)	+(a+2d)+(a+3d)+(a	$(+4d) + (a+5d) = \frac{6 \times 1}{2}$	9		
	\Rightarrow 6a + 15d = 3 × 19					
	$\Rightarrow 2a + 5d = 19(2)$					
	Eq. (1) & (2) $3d = 9 \Rightarrow d = 3$					
	Also $2a + 2(3) = 10 \Longrightarrow 2a = 4 \Longrightarrow a = 2$					
	∴ six numbers are 2, 5, 8, 11, 14, 17					
	Wkt variance $= \sigma^2 = \frac{\sum xi^2}{n} - \mu^2$					
	$=\frac{2^2+5^2+8^2+11^2+14^2+17^2}{6}-\left(\frac{19}{2}\right)^2$					
	$=\frac{4+25+64}{2}$	$\frac{+121+196+289}{6} - \left(\frac{19}{2}\right)$	2			

Jee Mains-2023_24th Jan_Shift-11



$$\Rightarrow 1 - 3n + \frac{n(n-1)}{1-2} \cdot 9 = 372$$

$$\Rightarrow 9n^{2} - 15n - 750 = 0$$

$$\Rightarrow (n-10)(9n + 75) = 0$$

$$\therefore n = 10$$

Now $T_{2+1} = {}^{10}C_{2}x^{8} \left(-\frac{3}{x^{2}}\right)^{2} = {}^{10}C_{2} \times 9 \times x^{4}$

Jee Mains-2023 24th Jan Shift-11

Page 36

Jee Mains-2023_24th Jan_Shift-11

82. If the area of the region bounded by the curves $y^2 - 2y = -x, x + y = 0$ is A, then 8A is equal to

Key:-9/2 sq units

Sol:- Given curves are

 $y^{2} - 2y = -x$(1) And y = -x(2) From (1) & (2) $\Rightarrow y^{2} - 2y = y$ $\Rightarrow y^{2} - 3y = 0 \Rightarrow y = 0, y = 3$

Point of intersections are A (0, 0) B (-3, 3)

Required area
$$A = \int_{0}^{3} [2y - y^2 - (y)] dy$$

$$(-3,3)$$
 $y = 3$
 $(0,0)$ $y=0$ x

$$= \int_{0}^{3} (3y - y)^{2} dy = \left(\frac{3y^{2}}{2} - \frac{y^{3}}{3}\right)_{0}^{3} = \frac{9}{2}$$
 sq.units

83. Let $S = \{\theta \in [0, 2\pi) : \tan(\pi \cos \theta + \tan(\pi \sin \theta) = 0)\}$. Then $\sum_{\theta \in S} \sin^2\left(\theta + \frac{\pi}{4}\right)$ is equal to _____

Key:-1

Sol:-
$$\tan(\pi \cos \theta) = -\tan(\pi \sin \theta)$$

 $= \tan(\pi - \pi \sin \theta)$
 $\Rightarrow \pi \cos \theta + \pi \sin \theta = \pi$ $\Rightarrow \cos \theta + \sin \theta = 1$
 $\Rightarrow \sin\left(\theta + \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \quad \therefore \quad \theta + \frac{\pi}{4} = n\pi + (-1)^n \frac{\pi}{4}, n \in \mathbb{Z}$
 $\theta_n = n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{4}, n \in \mathbb{Z}$
 $n = 0 \Rightarrow \theta_0 = 0$
 $n = 1 \Rightarrow \theta_1 = \pi - \frac{\pi}{4} - \frac{\pi}{4} = \frac{\pi}{2}$

$$n = 1 \Rightarrow \theta_{1} = 2\pi + \frac{\pi}{4} - \frac{\pi}{4} = 2\pi \neq [0, 2\pi]$$

$$\therefore \theta = 0, \frac{\pi}{2} \in [0, 2\pi)$$

$$\sum_{0 \le 5} \sin^{2} \left(\theta + \frac{\pi}{4}\right) = \sin^{2} \left(\theta + \frac{\pi}{4}\right) + \sin^{2} \left(\frac{\pi}{2} + \frac{\pi}{4}\right)$$

$$= \sin^{2} \frac{\pi}{4} + \cos^{2} \frac{\pi}{4} = 1$$
84. Let $a = \hat{i} + 2\hat{j} + \lambda\hat{k}, \ \hat{b} = 3\hat{i} - 5\hat{j} - \lambda\bar{k}, \ \hat{a} \cdot \hat{c} = 7, 2\hat{b} \cdot \hat{c} + 43 = 0, \ \hat{a} \times \hat{c} = \bar{b} \times \hat{c} \text{ then } | \ \hat{a} \cdot \bar{b} | \ \text{ is equal to} _$
Key: 25.79 $\bar{a} = \hat{i} + 2\hat{j} + \lambda\hat{k}, \ \Rightarrow \bar{c} = (-2i + 7j + 2\lambda k)$
Sol: $\bar{a} \times \bar{c} = \bar{b} \times \bar{c} \qquad \because \ \bar{a} \cdot \bar{c} = 7$

$$\Rightarrow (\bar{a} - \bar{b}) \times \bar{c} = 0 \qquad \Rightarrow t(-2i + 7j + 2\lambda k), \ \hat{b} = 3\hat{i} - 5\hat{j} - \lambda\bar{k}, \ \because \ \bar{b} \cdot \bar{c} = \frac{43}{2} \qquad \Rightarrow t(-6 - 35 - 2\lambda^{2}) = -\frac{43}{2}$$

$$\left(\frac{7}{2\lambda^{2} + 12}\right)(-41 - 2\lambda^{2}) = -\frac{43}{2} \qquad \Rightarrow (287 + 14\lambda^{2}) = 43(\lambda^{2} + 6)$$

$$287 + 14\lambda^{2} = 43\lambda^{2} + 258 \Rightarrow 29\lambda^{2} = 29 \qquad \Rightarrow \lambda^{2} = 1 \Rightarrow \lambda = 1$$
Now $| \ \bar{a} \cdot \bar{b} | = 3 - 10 - \lambda^{2} | = 1 - 7 - 1 | = 8$
85. The equation of the sides AB, BC and CA of n triangle ABC are:
$$2x + y = 0, x + yy = 21a, (a \neq 0) \text{ and } x - y = 3 \text{ respectively. Let P(2, a) be the centroid of ΔABC . Then (BC)² is equal to
Key:- 122
Sol: - $2x + y = 0$ -----(1)
$$x - y = 0$$

$$x + py = 21a$$

$$A(1, -2)$$

$$(-2x + y = 0 - ---(1))$$

$$x + py = 21a$$

$$(-3)$$

$$solving (1) \& (2) \Rightarrow A (1, -2)$$

$$(-2x + 1 - 3a + 2)$$

$$(-2x + 1 - 3a + 2)$$$$

Page 38

🐝ri Chaitanya IIT Academy, India

Solving (4) 7 95) we get \Rightarrow s = -a, t = 2 + a B(-a, 2a); C(a+5, a+2) \therefore B, C lies on x + py = 21a $\Rightarrow -a + 2ap = 21a \Rightarrow P = 11$ and pa + 2p = 20a - 5 $\therefore 27 = 9a \Longrightarrow a = 3$ If p = 11: B(-3,6), C(8,5), (BC)² = $(8+3)^2 + (5-6)^2$ \therefore Distance (BC)² = 122 If the shortest between the lines $\frac{x+\sqrt{6}}{2} = \frac{y-\sqrt{6}}{3} = \frac{z-\sqrt{6}}{4}$ and $\frac{x-\lambda}{3} = \frac{y-2\sqrt{6}}{4} = \frac{z+2\sqrt{6}}{5}$ is 6, 86. then the square of sum of all possible values of λ is Key:- 624 **Sol:-** Given lines are $\frac{x+\sqrt{6}}{2} = \frac{y-\sqrt{6}}{3} = \frac{3-\sqrt{6}}{4}$ and $\frac{x-\lambda}{3} = \frac{y-2\sqrt{6}}{4} = \frac{3+2\sqrt{6}}{5}$ $\vec{a} = -\sqrt{6}\vec{i} + \sqrt{6}\vec{j} + \sqrt{6}\vec{k}$ $\vec{c} = \lambda \vec{i} + 2\sqrt{6}\vec{i} - 2\sqrt{6}\vec{k}$ $\vec{b} = 2\vec{i} + 3\vec{i} + 4\vec{k}$ $\vec{d} = 3\vec{i} + 4\vec{i} + 5\vec{k}$ $\vec{a} - \vec{c} = (-\sqrt{6} - \lambda)\vec{i} = \sqrt{6}\vec{i} + 3\sqrt{6}\vec{k}$ $\begin{bmatrix} \vec{a} - \vec{c} \ \vec{b} \ \vec{d} \end{bmatrix} = \begin{vmatrix} -\sqrt{6} - \lambda & -\sqrt{6} & 3\sqrt{6} \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix} = (-\sqrt{6} - \lambda)(15 - 16) + \sqrt{6}(10 - 12) + 3\sqrt{6}(8 - 9)$ $=\sqrt{6}+\lambda-2\sqrt{6}-3\sqrt{6}=\lambda-4\sqrt{6}$ $\overline{\mathbf{b}} \times \overline{\mathbf{d}} = \begin{vmatrix} \overline{\mathbf{i}} & \overline{\mathbf{j}} & \overline{\mathbf{k}} \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix} = \overline{\mathbf{i}}(15 - 16) - \overline{\mathbf{j}}(10 - 12) + \overline{\mathbf{k}}(8 - 9) = -\overline{\mathbf{i}} + 2\overline{\mathbf{j}} - \overline{\mathbf{k}} \quad |\overline{\mathbf{b}} \times \overline{\mathbf{d}}| = \sqrt{1 + 4 + 1} = \sqrt{6}$ $\frac{|[\overline{\mathbf{a}} - \overline{\mathbf{c}} \quad \mathbf{b} \quad \mathbf{d}]|}{|\overline{\mathbf{b}} \times \overline{\mathbf{d}}|} = 6 \Longrightarrow |\lambda - 4\sqrt{6}| = 6\sqrt{6}$ Shortest distance is '6' $\lambda - 4\sqrt{6} = +6\sqrt{6} \Longrightarrow \lambda = 10\sqrt{6}, \lambda = -2\sqrt{6}$ Sum of squares of all possible values of λ is $(10\sqrt{6})^2 + (-2\sqrt{6})^2 = 600 + 24 = 624$ Let f be a differentiable function defined on $\left| 0, \frac{\pi}{2} \right|$ such that f(x) > 0 and 87. $f(x) + \int_{0}^{x} f(t)\sqrt{1 - (\log_{e} f(t))^{2}} dt = e, \forall x \in [0, \frac{\pi}{2}].$ Then $\left(6\log_{e} f\left(\frac{\pi}{6}\right)\right)^{2}$ is equal to ______ Key:-27 **Sol:-** $f(x) + \int_{0}^{2} f(t) \sqrt{1 - (\log_e f(t))^2} dt = e$ Jee Mains-2023_24th Jan Shift-11

Jee Mains-2023_24th Jan_Shift-11

By Leibniz condition

$$f'(x) + f(x)\sqrt{1-(\log_{e} f(x))^{2}}(1) - 0 = 0$$
 $f'(x) + f(x)\sqrt{1-(\log_{e} f(x))^{2}} = 0$
 $f'(x) = -f(x)\sqrt{1-(\log_{e} f(x))^{2}}$
 $\frac{1}{\sqrt{1-(\log_{e} f(x))^{2}}} \frac{f'(x)}{f(x)} = -1$
Integrate on both sides
 $\int \frac{1}{\sqrt{1-(\log_{e} f(x))^{2}}} \frac{f'(x)}{f(x)} dx = -\int dx$
 $\log_{e} f(x) = t$
Differentiate on both sides w.r.t to $x = \frac{f'(x)}{f(x)} dx = dt$
 $\int \frac{1}{\sqrt{1-t^{2}}} dt - \int dx$
 $\sin^{-1}(t) = -x + c$
 $\sin^{-1}(\log_{e} f(x)) = -x + c.....(1)$
Put $x = 0 \Rightarrow \sin^{-1}(\log_{e} f(0)) = 0 + C$
 $\therefore f(0) = e$
 $\sin^{-1}(1) = c \Rightarrow c = \frac{\pi}{2}$
From (1)
 $\sin^{-1}(\log_{e} f(x)) = -x + \frac{\pi}{2} \log_{e} f(x) = \sin(\frac{\pi}{2} - x)$
 $\log_{e} f(x) = \cos x$
Put $x = \frac{\pi}{6}$
 $\log_{e} f(\frac{\pi}{6}) = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$
 $6\log_{e} f(\frac{\pi}{6}) = 6(\frac{\sqrt{3}}{2}) = 3\sqrt{3}$
S.O.B
 $\left(6\log_{e} f(\frac{\pi}{6})\right)^{2} = (3\sqrt{3})^{2} = 27$
88. If $\frac{1^{1} + 2^{1} + 3^{1} + up to n terms}{1.3 + 2.5 + 3.7 + up to n terms} = \frac{9}{5}$, then the value of n is
Key: - 5
Sol: $\frac{1^{1} + 2^{1} + 3^{1} + up to n terms}{1.3 + 2.5 + 3.5 + up to n terms} = \frac{n(n+1)(2n+1)}{3} + \frac{n(n+1)}{2}$
 $t_{e} = n(2n+1) = 2n^{2} + n$
 $S_{e} = \sum n = \sum n^{2} + \sum n = \frac{2(n(n+1)(2n1)}{6} + \frac{n(n+1)}{2}$
 $\frac{n^{2}(n+1)^{2}}{\frac{n(n+1)(2n+1)}{3} + \frac{n(n+1)}{2}} = \frac{9}{5}$
 $\frac{n(n+1)}{2n+1} + \frac{1}{2} = \frac{9}{5}$
 $\Rightarrow \frac{n^{2} + n}{4n+2+3} = \frac{9}{5}$

Jee Mains-2023_24th Jan_Shift-11

Page 40

Jee Mains-2023_24th Jan_Shift-11

 $\frac{n^2 + n}{2} \times \frac{3}{4n + 5} = \frac{9}{5} \qquad 5n^2 + 5n = 24n + 30$ $5n^2 - 19n - 30 = 0 \qquad 5n^2 - 25n + 6n - 30 = 0$ 5n(n - 5) + 6(n - 5) = 0 $(5n + 6)(n - 5) = 0 \Longrightarrow n = 5$

Sr	i Chaitanya IIT			Jee Mains-2023_24th Jan_Shift-11		
89.	Three urn	ns A, B	and C contain 4 red, 6 blo	ock, 5 red, 5 block, and λ red, 4 block balls		
	respective	ely. On	e of the urns is selected at	random and a ball is drawn. If the ball drawn is		
	red and the	ne prob	ability that it is drawn from	m urn C is 0.4, then the square of the length of		
	the side o	of the la	rgest equilateral triangle,	inscribed in the parabola $y^2 = \lambda x$ with one		
	vertex at	the ver	ex of the parabola is			
Key:	- 432					
Sol:-	Urn R	Red	Black			
	А	4	6			
	В	5	5			
	С	λ	4			
	Let E be t	the eve	nt to set red ball from 'C'			
	P(C/E) =		$\frac{P(C) \cdot P(E / C)}{E / A) + P(B)P(E / B) + P(C)P(E / B)}$			
				(E/C)		
			$\frac{\frac{1}{3} \times \frac{\lambda}{\lambda + 4}}{\frac{5}{10} + \frac{\lambda}{\lambda + 4}}$			
	Given 0.4	$4 = \frac{1}{1}$	$\frac{3 \lambda + 4}{5 \lambda}$			
		$\frac{1}{3}\left(\frac{4}{10}\right)$	$\left(+\frac{3}{10}+\frac{\lambda}{\lambda+4}\right)$			
	$\frac{4}{10}\left(\frac{9}{10} + \frac{\lambda}{\lambda + 4}\right) = \frac{\lambda}{\lambda + 4}$					
	$76\lambda + 144 = 100\lambda \Longrightarrow 24\lambda = 144 \Longrightarrow \lambda = 6$					
	Given parabola $y^2 = \lambda x \Rightarrow y^2 = 6x$					
	B					
	a	60^{0} a/2	2			
)0				
	A	D a/2				
	a	$\sqrt{60^0}^{a/2}$				
		\checkmark				
		С				
	$\sin 30^{\circ} = \frac{E}{2}$	$\frac{3D}{\rightarrow B}$	$D = \frac{a}{a}$			
		u	2			
	$\cos 30^{\circ} = \frac{A}{2}$	$\frac{AD}{a} \Rightarrow A$	$D = \frac{\sqrt{3}}{2}a$			
	$\mathbf{B} = \left(\frac{\sqrt{3}}{2}\mathbf{a}\right)$	$\left(\frac{a}{2}\right)$ lies	on parabola $y^2 = 6x$			
	$\frac{a^2}{4} = 6\left(\frac{\sqrt{3}}{2}\right)$	$\left[\frac{\overline{3}a}{2}\right] \Rightarrow a$	$=12\sqrt{3}$			
	$a^2 = 144 \times 10^{-10}$	$3 \Rightarrow a^2 =$	= 432			

Jee Mains-2023_24th Jan_Shift-11

Sri	Chaitanya IIT Academy, India Jee Mains-2023_24 th Jan_Shift-11
90.	The minimum number of elements that must be added to the relation $R = \{a, b\}, (b, c), (b, d)\}$
	on the set {a,b,c,d} so that it is an equivalence relation is
Key:-	- 13
Sol:-	Let $A = \{a, b, c, d\}$
	Given $R = \{(a, b), (b, c), (b, d)\}$
	We can made R as equivalence
	We have to add order pairs (a,a), (b,b), (c,c), (d,d), (b,a), (c, b), (d, b), (a, c), (c, a), (c, d),
	(d, c)
	(a, d), (d, a)
	Then $R = \{(a,a), (b,b), (c,c), (d,d), (b,a), (c, b), (d, b), (a, c), (c, a), (c, d), (d, c), (a, d), (a, d), (b, c), (c, c),$
	(d, a) }
	Then R is equivalence
	Minimum number of ordered pairs $= 13$